$ 
				\eqalign{ 
				  & 4\log (2x + 2) =  - 2  \cr 
				  & \log (2x + 2) =  - \frac{1} 
				{2}  \cr 
				  & 2x + 2 = 10^{ - \frac{1} 
				{2}}   \cr 
				  & 2x + 2 = \frac{1} 
				{{10^{\frac{1} 
				{2}} }}  \cr 
				  & 2x + 2 = \frac{1} 
				{{\sqrt {10} }}  \cr 
				  & 2x = \frac{1} 
				{{\sqrt {10} }} - 2  \cr 
				  & x = \frac{1} 
				{{2\sqrt {10} }} - 1  \cr 
				  & x = \frac{{\sqrt {10} }} 
				{{20}} - 1 \cr} 
				$ | 
			
				$ 
				\eqalign{ 
				  & ^4 \log (2x + 2) =  - 2  \cr 
				  & 2x + 2 = 4^{ - 2}   \cr 
				  & 2x + 2 = \frac{1} 
				{{4^2 }}  \cr 
				  & 2x + 2 = \frac{1} 
				{{16}}  \cr 
				  & 2x =  - 1\frac{{15}} 
				{{16}}  \cr 
				  & x =  - \frac{{31}} 
				{{32}} \cr} 
				$ |