| 
	$
\begin{array}{l}
 \left\{ \begin{array}{l}
 90 = a \cdot 30^n  \\ 
 190 = a \cdot 70^n  \\ 
 \end{array} \right. \\ 
 \left\{ \begin{array}{l}
 a = \frac{{90}}{{30^n }} \\ 
 a = \frac{{190}}{{70^n }} \\ 
 \end{array} \right. \\ 
 \frac{{90}}{{30^n }} = \frac{{190}}{{70^n }} \\ 
 90 \cdot 70^n  = 190 \cdot 30^n  \\ 
 \log \left( {90 \cdot 70^n } \right) = \log \left( {190 \cdot 30^n } \right) \\ 
 \log \left( {90} \right) + \log \left( {70^n } \right) = \log \left( {190} \right) + \log \left( {30^n } \right) \\ 
 \log \left( {90} \right) + n \cdot \log \left( {70} \right) = \log \left( {190} \right) + n \cdot \log \left( {30^n } \right) \\ 
 n \cdot \log \left( {70} \right) - n \cdot \log \left( {30} \right) = \log \left( {190} \right) - \log \left( {90} \right) \\ 
 n \cdot \left( {\log \left( {70} \right) - \log \left( {30} \right)} \right) = \log \left( {190} \right) - \log \left( {90} \right) \\ 
 \left\{ \begin{array}{l}
 n = \frac{{\log \left( {190} \right) - \log \left( {90} \right)}}{{\log \left( {70} \right) - \log \left( {30} \right)}} \approx {\rm{0}}{\rm{,882}} \\ 
 {\rm{a = }}\frac{{90}}{{30^{{\rm{0}}{\rm{,882}}} }} \approx 4,48 \\ 
 \end{array} \right. \\ 
 W = 4,48 \cdot m^{0,882}  \\ 
 \end{array}
$ 
 
 
 
 |