| 
				 
					a 
				
					$ 
					\eqalign{ 
					& 4^{x - 2} \cdot 8^{3x - 1} = \sqrt 2 \cr 
					& \left( {2^2 } \right)^{x - 2} \cdot \left( {2^3 } \right)^{3x - 1} = 2^{\frac{1} 
					{2}} \cr 
					& 2^{2x - 4} \cdot 2^{9x - 3} = 2^{\frac{1} 
					{2}} \cr 
					& 2^{2x - 4 + 9x - 3} = 2^{\frac{1} 
					{2}} \cr 
					& 2^{11x - 7} = 2^{\frac{1} 
					{2}} \cr 
					& 11x - 7 = \frac{1} 
					{2} \cr 
					& 11x = 7\frac{1} 
					{2} \cr 
					& x = \frac{{15}} 
					{{22}} \cr} 
					$ 
			 | 
			
				 
					b 
				
					$ 
					\eqalign{ 
					& 9 \cdot 3^{2x} - 3^{x + 2} = 54 \cr 
					& 9 \cdot 3^{2x} - 9 \cdot 3^x = 54 \cr 
					& 3^{2x} - 3^x = 6 \cr 
					& \left( {3^x } \right)^2 - 3^x - 6 = 0 \cr 
					& y^2 - y - 6 = 0 \cr 
					& (y - 3)(y + 2) = 0 \cr 
					& y = 3\,\,of\,\,y = - 2 \cr 
					& 3^x = 3\,\,of\,\,3^x = - 2\,\,(kan\,\,niet) \cr 
					& x = 1 \cr} 
					$ 
			 | 
			
				 
					c 
				
					$ 
					\eqalign{ 
					& 3^{x^2 } = \left( {\frac{1} 
					{3}} \right)^{ - x - 2} \cr 
					& 3^{x^2 } = \left( {3^{ - 1} } \right)^{ - x - 2} \cr 
					& 3^{x^2 } = 3^{x + 2} \cr 
					& x^2 = x + 2 \cr 
					& x^2 - x - 2 = 0 \cr 
					& (x - 2)(x + 1) = 0 \cr 
					& x = 2 \vee x = - 1 \cr} 
					$ 
			 | 
		
		
			| 
				 
					d 
				
					$ 
					\eqalign{ 
					& \left( {\frac{1} 
					{2}\sqrt 2 } \right)^{2x + 3} = 2^x \cr 
					& \left( {2^{ - 1} \cdot 2^{\frac{1} 
					{2}} } \right)^{2x + 3} = 2^x \cr 
					& \left( {2^{ - \frac{1} 
					{2}} } \right)^{2x + 3} = 2^x \cr 
					& 2^{ - x - 1\frac{1} 
					{2}} = 2^x \cr 
					& - x - 1\frac{1} 
					{2} = x \cr 
					& 2x = - 1\frac{1} 
					{2} \cr 
					& x = - \frac{3} 
					{4} \cr} 
					$ 
			 | 
			
				 
					e 
				
					$ 
					\eqalign{ 
					& {2}^{{x - 3}} \cdot 5^{x + 1} = 62,5 \cr 
					& 2^{ - 4} \cdot {2}^{{x + 1}} \cdot 5^{x + 1} = 62,5 \cr 
					& {2}^{{x + 1}} \cdot 5^{x + 1} = 1000 \cr 
					& 10^{x + 1} = 1000 \cr 
					& 10^{x + 1} = 10^3 \cr 
					& x + 1 = 3 \cr 
					& x = 2 \cr} 
					$ 
			 | 
			
				 
					f 
				
					$ 
					\eqalign{ 
					& 16^x = 8 + 7 \cdot 4^x \cr 
					& 4^{2x} = 8 + 7 \cdot 4^x \cr 
					& Neem\,\,\,t = 4^x \cr 
					& t^2 = 8 + 7t \cr 
					& t^2 - 7t - 8 = 0 \cr 
					& (t + 1)(t - 8) = 0 \cr 
					& t = - 1\,\,of\,\,t = 8 \cr 
					& 4^x = - 1\,\,kan\,\,niet \cr 
					& 4^x = 8 \cr 
					& 2^{2x} = 2^3 \cr 
					& 2x = 3 \cr 
					& x = 1\frac{1} 
					{2} \cr} 
					$ 
			 |