| 
					a 
					$\eqalign{
 & 4^{x - 2} \cdot 8^{3x - 1} = \sqrt 2 \cr
 & \left( {2^2 } \right)^{x - 2} \cdot \left( {2^3 } \right)^{3x - 1} = 2^{\frac{1}
 {2}} \cr
 & 2^{2x - 4} \cdot 2^{9x - 3} = 2^{\frac{1}
 {2}} \cr
 & 2^{2x - 4 + 9x - 3} = 2^{\frac{1}
 {2}} \cr
 & 2^{11x - 7} = 2^{\frac{1}
 {2}} \cr
 & 11x - 7 = \frac{1}
 {2} \cr
 & 11x = 7\frac{1}
 {2} \cr
 & x = \frac{{15}}
 {{22}} \cr}
 $
 | 
					b 
					$\eqalign{
 & 9 \cdot 3^{2x} - 3^{x + 2} = 54 \cr
 & 9 \cdot 3^{2x} - 9 \cdot 3^x = 54 \cr
 & 3^{2x} - 3^x = 6 \cr
 & \left( {3^x } \right)^2 - 3^x - 6 = 0 \cr
 & y^2 - y - 6 = 0 \cr
 & (y - 3)(y + 2) = 0 \cr
 & y = 3\,\,of\,\,y = - 2 \cr
 & 3^x = 3\,\,of\,\,3^x = - 2\,\,(kan\,\,niet) \cr
 & x = 1 \cr}
 $
 | 
					c 
					$\eqalign{
 & 3^{x^2 } = \left( {\frac{1}
 {3}} \right)^{ - x - 2} \cr
 & 3^{x^2 } = \left( {3^{ - 1} } \right)^{ - x - 2} \cr
 & 3^{x^2 } = 3^{x + 2} \cr
 & x^2 = x + 2 \cr
 & x^2 - x - 2 = 0 \cr
 & (x - 2)(x + 1) = 0 \cr
 & x = 2 \vee x = - 1 \cr}
 $
 | 
		
			| 
					d 
					$\eqalign{
 & \left( {\frac{1}
 {2}\sqrt 2 } \right)^{2x + 3} = 2^x \cr
 & \left( {2^{ - 1} \cdot 2^{\frac{1}
 {2}} } \right)^{2x + 3} = 2^x \cr
 & \left( {2^{ - \frac{1}
 {2}} } \right)^{2x + 3} = 2^x \cr
 & 2^{ - x - 1\frac{1}
 {2}} = 2^x \cr
 & - x - 1\frac{1}
 {2} = x \cr
 & 2x = - 1\frac{1}
 {2} \cr
 & x = - \frac{3}
 {4} \cr}
 $
 | 
					e 
					$\eqalign{
 & {2}^{{x - 3}} \cdot 5^{x + 1} = 62,5 \cr
 & 2^{ - 4} \cdot {2}^{{x + 1}} \cdot 5^{x + 1} = 62,5 \cr
 & {2}^{{x + 1}} \cdot 5^{x + 1} = 1000 \cr
 & 10^{x + 1} = 1000 \cr
 & 10^{x + 1} = 10^3 \cr
 & x + 1 = 3 \cr
 & x = 2 \cr}
 $
 | 
					f 
					$\eqalign{
 & 16^x = 8 + 7 \cdot 4^x \cr
 & 4^{2x} = 8 + 7 \cdot 4^x \cr
 & Neem\,\,\,t = 4^x \cr
 & t^2 = 8 + 7t \cr
 & t^2 - 7t - 8 = 0 \cr
 & (t + 1)(t - 8) = 0 \cr
 & t = - 1\,\,of\,\,t = 8 \cr
 & 4^x = - 1\,\,kan\,\,niet \cr
 & 4^x = 8 \cr
 & 2^{2x} = 2^3 \cr
 & 2x = 3 \cr
 & x = 1\frac{1}
 {2} \cr}
 $
 |