Actueel
Archief
Culinair
Didactiek
Documentatie
Etalage
Formules
Fotoboeken
Functies
Geschiedenis
ICT
ICTauteur
Laatste nieuws
Lesmateriaal
Muziek
Natuur
Onderwijs
Ontspanning
Persoonlijk
Probleemaanpak
Proeftuin
Puzzels
Rekenen
Rekenmachines
Ruimtemeetkunde
Schoolwiskunde
Snippers
Systeem
Taal van de wiskunde
Vergelijkingen
Verhalen
WisFaq
WisKast




Kwadraatafsplitsen

Kwadraatafsplitsen

Willem van Ravenstein

Stel je voor dat ik van een rechthoek met zijden $x$ en $x+4$ een vierkant wil maken.
q9921img1.gif
Ik verdeel daarvoor het stuk van $4x$ is twee stukken van $2x$ en leg ze netjes aan weerzijden van het vierkant $x^{2}$. Dan heb ik al bijna een vierkant met zijde $x+2$.
q9921img2.gif
Maar 't klopt niet helemaal. Eigenlijk kom ik een stukje van $4$ tekort. Maar bijna goed...:-)
q9921img3.gif

Eigenlijk heb ik geprobeerd om $x^{2}+4x$ te schrijven als een kwadraat. Dat ging 'bijna' goed, maar niet helemaal. Als je 't schrijft als formules dan krijg je zoiets als:

  • $x^{2}+4x=(x+2)^{2}-4$

Die $4$ is dan dat stukje dat ik tekort kwam.

  • Ga na dat $(x+2)^{2}-4$ gelijk is aan $x^{2}+4x$

Kwadraatafsplitsen
Zoiets kan je ook doen voor bijvoorbeeld $x^2+6x+5$. Ik maak er $(x+3)^{2}-9+5$ van. Die $9$ komt van $3^{2}$, zodat je kunt schrijven:
  • $x^2+6x+5=(x+3)^{2}-9+5=(x+3)^{2}-4$

We zeggen dan dat we een kwadraat hebben afgesplitst.

©2004-2023 W.v.Ravenstein