## Oplossing week 6

De oplossing kan je vinden op de futility-website.

Call the other intersection point D and draw AD and DC. All angles inscribed in a circle and subtended by the same chord are equal, so angle BAD retains the same measure as A travels around its circle. Similarly, angle BCD remains the same as C travels around its circle. This means that triangle ADC will always have the same shape: As line AC pivots around B, triangle ADC will vary in size but remain self-similar.

So which position will maximize its size? AD and DC are chords of their respective circles, and the longest chord is a diameter. So turn the triangle until both of these lines are diameters (this will happen simultaneously); at that point triangle ADC will reach its maximum size and line AC its maximum length.

From Mogens Larsen in Richard Guy and Robert Woodrow, eds., *The Lighter Side of Mathematics*, 1994.