`
					$
					\begin{array}{l}
					y = 3 \cdot 2^x + 5 \\
					3 \cdot 2^x = y - 5 \\
					2^x = \frac{1}{3}y - 1\frac{2}{3} \\
					x = {}^2\log \left( {\frac{1}{3}y - 1\frac{2}{3}} \right) \\
					\end{array}
					$
of...
					$
					\begin{array}{l}
					y = 3 \cdot 2^x + 5 \\
					3 \cdot 2^x = y - 5 \\
					2^x = \frac{{y - 5}}{3} \\
					x = {}^2\log \left( {\frac{{y - 5}}{3}} \right) \\
					\end{array}
					$