`
a.
					$
					\eqalign{
					  & {}^3\log \left( {2x^2  - 3} \right) = 6  \cr
					  & 2x^2  - 3 = 3^6   \cr
					  & 2x^2  - 3 = 729  \cr
					  & 2x^2  = 732  \cr
					  & x^2  = 366  \cr
					  & x =  - \sqrt {366} \,\,of\,\,x = \sqrt {366}  \cr}
					$
b.
					$
					\eqalign{
					  & {}^{\frac{1}
					{2}}\log \left( {\frac{1}
					{{4x}}} \right) = 4  \cr
					  & \frac{1}
					{{4x}} = \left( {\frac{1}
					{2}} \right)^4   \cr
					  & \frac{1}
					{{4x}} = \frac{1}
					{{16}}  \cr
					  & 4x = 16  \cr
					  & x = 4 \cr}
					$
c.
					$
					\eqalign{
					  & {}^2\log \left( {4 - 30x^2 } \right) =  - 2  \cr
					  & 4 - 30x^2  = 2^{ - 2}   \cr
					  & 4 - 30x^2  = \frac{1}
					{4}  \cr
					  & 16 - 120x^2  = 1  \cr
					  & 120x^2  = 15  \cr
					  & x^2  = \frac{1}
					{8}  \cr
					  & x =  - \sqrt {\frac{1}
					{8}} \,\,of\,\,x = \sqrt {\frac{1}
					{8}}   \cr
					  & x =  - \frac{1}
					{4}\sqrt 2 \,\,of\,\,x = \frac{1}
					{4}\sqrt 2  \cr}
					$
					$
					\begin{array}{l}
					y = 3 \cdot 2^x + 5 \\
					3 \cdot 2^x = y - 5 \\
					2^x = \frac{1}{3}y - 1\frac{2}{3} \\
					x = {}^2\log \left( {\frac{1}{3}y - 1\frac{2}{3}} \right) \\
					\end{array}
					$
of...
					$
					\begin{array}{l}
					y = 3 \cdot 2^x + 5 \\
					3 \cdot 2^x = y - 5 \\
					2^x = \frac{{y - 5}}{3} \\
					x = {}^2\log \left( {\frac{{y - 5}}{3}} \right) \\
					\end{array}
					$